
1

Xen Cloud Platform Software
Development Kit Guide

Release 0.1
0.1
Published October 2009

1.0 Edition

Xen Cloud Platform Software
Development Kit Guide

2

Xen Cloud Platform Software Development Kit Guide: Release 0.1

Published October 2009
Copyright © 2009 Xen.org

Xen®, Xen.org®, Xen.org Essentials for Xen Cloud Platform™, Xen Cloud Platform™ and logos are either registered trademarks
or trademarks of Xen.org in the United States and/or other countries. Other company or product names are for informational
purposes only and may be trademarks of their respective owners.

This product contains an embodiment of the following patent pending intellectual property of Xen.org:

1. United States Non-Provisional Utility Patent Application Serial Number 11/487,945, filed on July 17, 2006, and entitled “Using
Writeable Page Tables for Memory Address Translation in a Hypervisor Environment”.

2. United States Non-Provisional Utility Patent Application Serial Number 11/879,338, filed on July 17, 2007, and entitled “Track-
ing Current Time on Multiprocessor Hosts and Virtual Machines”.

3

Contents
1. Introduction .. 5

2. Getting Started ... 7
System Requirements and Preparation ... 7
Downloading .. 7
Installation ... 7
What's new ... 7
Content Map .. 7
Building Samples for the Linux Platform .. 8
Building Samples for the Windows Platform .. 8
Running the CLI .. 8

Tab Completion .. 8
Accessing SDK reference ... 9

3. Overview of the Xen Cloud Platform API ... 11
Getting Started with the API ... 11

Authentication: acquiring a session reference .. 12
Acquiring a list of templates to base a new VM installation on 12
Installing the VM based on a template .. 12
Taking the VM through a start/suspend/resume/stop cycle 13
Logging out ... 13
Install and start example: summary ... 13

Object Model Overview .. 14
Working with VIFs and VBDs .. 16

Creating disks and attaching them to VMs ... 17
Creating and attaching Network Devices to VMs 19
Host configuration for networking and storage .. 19

Exporting and Importing VMs .. 20
Xen Virtual Appliance (XVA) VM Import Format .. 21

XML-RPC notes ... 25
Datetimes .. 25

Where to look next .. 25

4. Using the API ... 27
Anatomy of a typical application ... 27

Choosing a low-level transport .. 27
Authentication and session handling ... 28
Finding references to useful objects .. 28
Invoking synchronous operations on objects .. 29
Using Tasks to manage asynchronous operations 29

4

Subscribing to and listening for events .. 30
Language bindings ... 31

C ... 31
C# ... 31
Python ... 32
Command Line Interface (CLI) .. 33

Complete application examples ... 33
Simultaneously migrating VMs using XenMotion 33
Cloning a VM using the XE CLI .. 36

5. Using HTTP to interact with Xen Cloud Platform ... 39
VM Import and Export .. 39
Getting Xen Cloud Platform Performance Statistics .. 39

6. Xen Cloud Platform API extensions ... 43
VM console forwarding ... 43

Retrieving VNC consoles using the API ... 44
Disabling VNC forwarding for Linux VM ... 45

Paravirtual Linux installation ... 45
Red Hat Enterprise Linux 4.1/4.4 .. 46
Red Hat Enterprise Linux 4.5/5.0 .. 46
SUSE Enterprise Linux 10 SP1 .. 46
CentOS 4.5 / 5.0 .. 46

Adding Xenstore entries to VMs ... 46
Security enhancements .. 47
Advanced settings for network interfaces ... 48

ethtool settings .. 48
Miscellaneous settings ... 49

Internationalization for SR names ... 49

5

Chapter 1. Introduction
Welcome to the developer's guide for Xen Cloud Platform. Here you will find the information
you need in order to understand and use the Software Development Kit (SDK) that Xen
Cloud Platform provides. This information will provide you with some of the architectural
background and thinking that underpins the APIs, the tools that have been provided, and
how to quickly get off the ground.

7

Chapter 2. Getting Started
System Requirements and Preparation

The Xen Cloud Platform SDK is packaged as a Linux VM that must be imported into a Xen
Cloud Platform host. This document refers to the SDK virtual machine interchangeably as
an SDK and an SDK VM. The first step towards working with the SDK is to install Xen Cloud
Platform. The Xen.org Xen Cloud Platform, is available for download at http://www.xen.org/
products/downloads.html. Please refer to the Xen Cloud Platform Installation Guide for de-
tailed instructions on how to set up your development host. When the installation is com-
plete, please note the host IP address and the host password.

Downloading
The SDK is available for download as a ZIP file at http://www.xen.org/prod-
ucts/downloads.html/ of around 250MB.

Installation
• Ensure that your Xen Cloud Platform host that you want to use to run the SDK VM

on is up and running.

When the import has completed, the SDK VM is installed and ready to go. Click on the
Overview tab of the SDK VM and inspect the networking configuration. If the SDK is to be
accessed remotely, then ensure that it has an interface connected to the correct network.
Note that the SDK VM will attempt to acquire an IP address from the DHCP service each
time it boots.

What's new
Starting with version 0.1, we now provide a rich management infrastructure consisting of a
comprehensive object model together with an application program interface (API) to install,
monitor and manage various aspects of virtual machine infrastructure.

The Xen Cloud Platform 0.1 SDK provides the API with C and Python language bindings,
and C# language binding compatible with .NET 2.0. The SDK also provides a new and
improved CLI that provides a comprehensive set of commands to manage your Xen Cloud
Platform Hosts. The CLI is available for both Linux and Windows platforms.

Content Map
The following is an overview of the contents of the /SDK directory. Where necessary, sub-
directories have their own individual README files.

Directory Description

/SDK/ Contains README.txt, a brief text
overview

http://www.xen.org/products/downloads.html
http://www.xen.org/products/downloads.html
http://www.xen.org/products/downloads.html/
http://www.xen.org/products/downloads.html/

8

Directory Description

/SDK/docs/pdf/ Contains api.pdf, the PDF version of the
reference for the API

/SDK/docs/html/ Contains index.html, the HTML version of
the reference for the API

/SDK/client-examples/c C examples and a Makefile to build them

/SDK/client-examples/c/src C source for the language bindings

/SDK/client-examples/csharp/XenSdk.net Microsoft Visual Studio 2005 solution
which includes the C# language bindings
(which compile to a .dll) and several ex-
ample projects

/SDK/client-examples/bash-cli Simple bash scripts which use the xe CLI

/SDK/client-examples/python Several example python programs

Building Samples for the Linux Platform
The SDK VM comes complete with the tools necessary to build the C samples. Looking at
the content map, the directory /SDK/client-examples/c has a Makefile at the top level
which builds the language bindings, as well as the C language samples that are included
as part of the SDK VM.

Building Samples for the Windows Platform
The C# examples in /SDK/client-examples/csharp/XenSdk.net must first be
copied to a Windows machine with Visual Studio and .NET 2.0 installed. The C# bindings
and the samples directories each have the appropriate solution (.sln) files generated by
Microsoft Visual Studio 2005. Launching them using Windows Explorer and rebuilding at
the top level will build the language bindings as well as the applications.

The IP address of the host is passed in as a parameter to each of the sample applications.
This needs to be set/changed to ensure that the applications work against the right Xen
Cloud Platform Host.

Running the CLI
The CLI for Linux is called xe, and for Windows is called xe.exe. The Windows version is
under /SDK/windows-cli. This needs to be copied onto a PC running Windows XP or
higher, and must have .Net 2.0 installed. When running in the SDK VM, the Linux CLI is
already installed and in the default path. Typing xe in the SDK VM console launches the CLI.

Tab Completion

The CLI has comprehensive tab completion that allows discovery of the commands and
parameters. On launching xe, hitting tab twice shows all the commands that the CLI has.

9

Accessing SDK reference

The SDK VM has a built-in web server that allows access to the samples and the complete
reference documentation.

To access this information

1. From the command prompt type ifconfig and hit ENTER.

2. Note down the IP address for the eth0 interface for this VM. If there is no eth0 interface,
please add a virtual NIC.

3. From any other machine, fire up a web browser and type http://
<sdk_ip_address>/

The full URL you need is also displayed in the “Message of the Day” in the SDK VM console
after it has completed booting.

11

Chapter 3. Overview of the Xen
Cloud Platform API

In this chapter we introduce the Xen Cloud Platform API (hereafter referred to as just "the
API") and its associated object model. The API has the following key features:

• Management of all aspects of the Xen Cloud Platform Host
Through the API one can manage VMs, storage, networking, host configuration and
pools. Performance and status metrics can also be queried from the API.

• Persistent Object Model
The results of all side-effecting operations (e.g. object creation, deletion and parameter
modifications) are persisted in a server-side database that is managed by the Xen Cloud
Platform installation.

• An event mechanism
Through the API, clients can register to be notified when persistent (server-side) objects
are modified. This enables applications to keep track of datamodel modifications per-
formed by concurrently executing clients.

• Synchronous and asynchronous invocation
All API calls can be invoked synchronously (that is, block until completion); any API call
that may be long-running can also be invoked asynchronously. Asynchronous calls return
immediately with a reference to a task object. This task object can be queried (through
the API) for progress and status information. When an asynchronously invoked operation
completes, the result (or error code) is available from the task object.

• Remotable and Cross-Platform
The client issuing the API calls does not have to be resident on the host being managed;
nor does it have to be connected to the host over ssh in order to execute the API. API
calls make use of the XML-RPC protocol to transmit requests and responses over the
network.

• Secure and Authenticated Access
The XML-RPC API server executing on the host accepts secure socket connections.
This allows a client to execute the APIs over the https protocol. Further, all the API calls
execute in the context of a login session generated through username and password
validation at the server. This provides secure and authenticated access to the Xen Cloud
Platform installation.

Getting Started with the API
We will start our tour of the API by describing the calls required to create a new VM on a Xen
Cloud Platform installation, and take it through a start/suspend/resume/stop cycle. This is
done without reference to code in any specific language; at this stage we just describe the
informal sequence of RPC invocations that accomplish our "install and start" task.

12

Authentication: acquiring a session reference

The first step is to call Session.login_with_password(<username>, <password>,
<client_API_version>). The API is session based, so before you can make other calls you
need to authenticate with the server. Assuming the username and password are authen-
ticated correctly, the result of this call is a session reference. Subsequent API calls take
the session reference as a parameter. In this way we ensure that only API users who are
suitably authorized can perform operations on a Xen Cloud Platform installation.

Acquiring a list of templates to base a new VM installation on

The next step is to query the list of "templates" on the host. Templates are special-
ly-marked VM objects that specify suitable default parameters for a variety of support-
ed guest types. (If you want to see a quick enumeration of the templates on a Xen
Cloud Platform installation for yourself then you can execute the xe template-list CLI
command.) To get a list of templates from the API, we need to find the VM objects on
the server that have their is_a_template field set to true. One way to do this by calling
VM.get_all_records(session) where the session parameter is the reference we acquired
from our Session.login_with_password call earlier. This call queries the server, returning
a snapshot (taken at the time of the call) containing all the VM object references and their
field values.

(Remember that at this stage we are not concerned about the particular mechanisms by
which the returned object references and field values can be manipulated in any particular
client language: that detail is dealt with by our language-specific API bindings and described
concretely in the following chapter. For now it suffices just to assume the existence of an
abstract mechanism for reading and manipulating objects and field values returned by API
calls.)

Now that we have a snapshot of all the VM objects' field values in the memory of our
client application we can simply iterate through them and find the ones that have their
"is_a_template" set to true. At this stage let's assume that our example application further
iterates through the template objects and remembers the reference corresponding to the
one that has its "name_label" set to "Debian Etch 4.0" (one of the default Linux templates
supplied with Xen Cloud Platform).

Installing the VM based on a template

Continuing through our example, we must now install a new VM based on the template we
selected. The installation process requires 2 API calls:

• First we must now invoke the API call VM.clone(session, t_ref, "my first VM"). This tells
the server to clone the VM object referenced by t_ref in order to make a new VM object.
The return value of this call is the VM reference corresponding to the newly-created VM.
Let's call this new_vm_ref.

• At this stage the object referred to by new_vm_ref is still a template (just like the VM
object referred to by t_ref, from which it was cloned). To make new_vm_ref into a VM
object we need to call VM.provision(session, new_vm_ref). When this call returns the
new_vm_ref object will have had its is_a_template field set to false, indicating that
new_vm_ref now refers to a regular VM ready for starting.

13

Note that the provision operation may take a few minutes, as it is as during this call that the
template's disk images are created. In the case of the Debian template, the newly created
disks are actually populated with a Debian root filesystem at this stage too.

Taking the VM through a start/suspend/resume/stop cycle

Now we have an object reference representing our newly-installed VM, it is trivial to take
it through a few lifecycle operations:

• To start our VM we can just call VM.start(session, new_vm_ref)
• After it's running, we can suspend it by calling VM.suspend(session, new_vm_ref),
• and then resume it by calling VM.resume(session, new_vm_ref).
• We can call VM.shutdown(session, new_vm_ref) to shutdown the VM cleanly.

Logging out

Once an application is finished interacting with a Xen Cloud Platform Host it is good practice
to call Session.logout(session). This invalidates the session reference (so it cannot be
used in subsequent API calls) and simultaneously deallocates server-side memory used
to store the session object.

Although inactive sessions will timeout eventually, the server has a hardcoded limit of 200
concurrent sessions. Once this limit has been reached fresh logins will evict the oldest ses-
sion objects, causing their associated session references to become invalid. So if you want
your applications to play nice with others accessing the server concurrently, then the best
policy is to create a single session at start-of-day, use this throughout the applications (note
that sessions can be used across multiple separate client-server network connections) and
then explicitly logout when possible.

Install and start example: summary

We have seen how the API can be used to install a VM from a Xen Cloud Platform template
and perform a number of lifecycle operations on it. You will note that the number of calls
we had to make in order to affect these operations was small:

• One call to acquire a session: Session.login_with_password()
• One call to query the VM (and template) objects present on the Xen Cloud Platform

installation: VM.get_all_records(). Recall that we used the information returned from this
call to select a suitable template to install from.

• Two calls to install a VM from our chosen template: VM.clone(), followed by
VM.provision().

• One call to start the resultant VM: VM.start() (and similarly other single calls to suspend,
resume and shutdown accordingly)

• And then one call to logout Session.logout()

The take-home message here is that, although the API as a whole is complex and fully
featured, common tasks (such as creating and performing lifecycle operations on VMs) are

14

very straightforward to perform, requiring only a small number of simple API calls. Keep this
in mind while you study the next section which may, on first reading, appear a little daunting!

Object Model Overview

This section gives a high-level overview of the object model of the API. A more detailed
description of the parameters and methods of each class outlined here can be found in
the Xen Cloud Platform API Reference document. Python, C and C# sample programs
that demonstrate how the API can be used practice to accomplish a variety of tasks are
available in the SDK VM and described in the following Chapter.

We start by giving a brief outline of some of the core classes that make up the API. (Don't
worry if these definitions seem somewhat abstract in their initial presentation; the textual
description in subsequent sections, and the code-sample walk through in the next Chapter
will help make these concepts concrete.)

VM A VM object represents a particular virtual machine instance
on a Xen Cloud Platform Host or Resource Pool. Example
methods include start, suspend, pool_migrate; example pa-
rameters include power_state, memory_static_max, and
name_label. (In the previous section we saw how the VM class
is used to represent both templates and regular VMs)

Host A host object represents a physical host in a Xen Cloud Platform
pool. Example methods include reboot and shutdown. Exam-
ple parameters include software_version, hostname, and
[IP] address.

VDI A VDI object represents a Virtual Disk Image. Virtual Disk Im-
ages can be attached to VMs, in which case a block device
appears inside the VM through which the bits encapsulated
by the Virtual Disk Image can be read and written. Example
methods of the VDI class include "resize" and "clone". Exam-
ple fields include "virtual_size" and "sharable". (When we called
VM.provision on the VM template in our previous example,
some VDI objects were automatically created to represent the
newly created disks, and attached to the VM object.)

SR An SR (Storage Repository) aggregates a collection of VDIs
and encapsulates the properties of physical storage on which
the VDIs' bits reside. Example parameters include type
(which determines the storage-specific driver a Xen Cloud
Platform installation uses to read/write the SR's VDIs) and
physical_utilisation; example methods include scan
(which invokes the storage-specific driver to acquire a list of the
VDIs contained with the SR and the properties of these VDIs)
and create (which initializes a block of physical storage so it is
ready to store VDIs).

Network

15

A network object represents a layer-2 network that exists in the
environment in which the Xen Cloud Platform Host instance
lives. Since Xen Cloud Platform does not manage networks
directly this is a lightweight class that serves merely to model
physical and virtual network topology. VM and Host objects that
are attached to a particular Network object (by virtue of VIF and
PIF instances -- see below) can send network packets to each
other.

At this point, readers who are finding this enumeration of classes rather terse may wish to
skip to the code walk-throughs of the next chapter: there are plenty of useful applications
that can be written using only a subset of the classes already described! For those who
wish to continue this description of classes in the abstract, read on.

On top of the classes listed above, there are 4 more that act as connectors, specifying
relationships between VMs and Hosts, and Storage and Networks. The first 2 of these
classes that we will consider, VBD and VIF, determine how VMs are attached to virtual
disks and network objects respectively:

VBD A VBD (Virtual Block Device) object represents an attach-
ment between a VM and a VDI. When a VM is booted its VBD
objects are queried to determine which disk images (VDIs)
should be attached. Example methods of the VBD class include
"plug" (which hot plugs a disk device into a running VM, making
the specified VDI accessible therein) and "unplug" (which hot un-
plugs a disk device from a running guest); example fields include
"device" (which determines the device name inside the guest un-
der which the specified VDI will be made accessible).

VIF A VIF (Virtual network InterFace) object represents an attach-
ment between a VM and a Network object. When a VM is boot-
ed its VIF objects are queried to determine which network de-
vices should be created. Example methods of the VIF class in-
clude "plug" (which hot plugs a network device into a running
VM) and "unplug" (which hot unplugs a network device from a
running guest).

The second set of "connector classes" that we will consider determine how Hosts are at-
tached to Networks and Storage.

PIF A PIF (Physical InterFace) object represents an attachment be-
tween a Host and a Network object. If a host is connected to
a Network (over a PIF) then packets from the specified host
can be transmitted/received by the corresponding host. Exam-
ple fields of the PIF class include "device" (which specifies the
device name to which the PIF corresponds -- e.g. eth0) and
"MAC" (which specifies the MAC address of the underlying NIC
that a PIF represents). Note that PIFs abstract both physical in-

16

terfaces and VLANs (the latter distinguished by the existence of
a positive integer in the "VLAN" field).

PBD A PBD (Physical Block Device) object represents an attachment
between a Host and a SR (Storage Repository) object. Fields in-
clude "currently-attached" (which specifies whether the chunk
of storage represented by the specified SR object) is currently
available to the host; and "device_config" (which specifies stor-
age-driver specific parameters that determines how the low-lev-
el storage devices are configured on the specified host -- e.g.
in the case of an SR rendered on an NFS filer, device_config
may specify the host-name of the filer and the path on the filer in
which the SR files live.)

Figure 3.1. Common API Classes

Graphical overview of API classes for managing VMs, Hosts, Storage and Networking

Figure 3.1, “Common API Classes” presents a graphical overview of the API classes in-
volved in managing VMs, Hosts, Storage and Networking. From this diagram, the symme-
try between storage and network configuration, and also the symmetry between virtual ma-
chine and host configuration is plain to see.

Working with VIFs and VBDs

In this section we walk through a few more complex scenarios, describing informally how
various tasks involving virtual storage and network devices can be accomplished using the
API.

17

Creating disks and attaching them to VMs

Let's start by considering how to make a new blank disk image and attach it to a running
VM. We will assume that we already have ourselves a running VM, and we know its cor-
responding API object reference (e.g. we may have created this VM using the procedure
described in the previous section, and had the server return its reference to us.) We will also
assume that we have authenticated with the Xen Cloud Platform installation and have a
corresponding session reference. Indeed in the rest of this chapter, for the sake of brevity,
we will stop mentioning sessions altogether.

Creating a new blank disk image

The first step is to instantiate the disk image on physical storage. We do this by calling
VDI.create(). The VDI.create call takes a number of parameters, including:

• name_label and name_description: a human-readable name/description for the disk
(e.g. for convenient display in the UI etc.). These fields can be left blank if desired.

• SR: the object reference of the Storage Repository representing the physical storage in
which the VDI's bits will be placed.

• read_only: setting this field to true indicates that the VDI can only be attached to VMs
in a read-only fashion. (Attempting to attach a VDI with its read_only field set to true in
a read/write fashion results in error.)

Invoking the VDI.create call causes the Xen Cloud Platform installation to create a blank
disk image on physical storage, create an associated VDI object (the datamodel instance
that refers to the disk image on physical storage) and return a reference to this newly cre-
ated VDI object.

The way in which the disk image is represented on physical storage depends on the type
of the SR in which the created VDI resides. For example, if the SR is of type "lvm" then the
new disk image will be rendered as an LVM volume; if the SR is of type "nfs" then the new
disk image will be a sparse VHD file created on an NFS filer. (You can query the SR type
through the API using the SR.get_type() call.)

Note

Some SR types might round up the virtual-size value to make it divisible by a con-
figured block size.

Attaching the disk image to a VM

So far we have a running VM (that we assumed the existence of at the start of this example)
and a fresh VDI that we just created. Right now, these are both independent objects that
exist on the Xen Cloud Platform Host, but there is nothing linking them together. So our
next step is to create such a link, associating the VDI with our VM.

The attachment is formed by creating a new "connector" object called a VBD (Virtual Block
Device). To create our VBD we invoke the VBD.create() call. The VBD.create() call takes
a number of parameters including:

• VM - the object reference of the VM to which the VDI is to be attached

18

• VDI - the object reference of the VDI that is to be attached

• mode - specifies whether the VDI is to be attached in a read-only or a read-write fashion

• userdevice - specifies the block device inside the guest through which applications run-
ning inside the VM will be able to read/write the VDI's bits.

• type - specifies whether the VDI should be presented inside the VM as a regular disk or
as a CD. (Note that this particular field has more meaning for Windows VMs than it does
for Linux VMs, but we will not explore this level of detail in this chapter.)

Invoking VBD.create makes a VBD object on the Xen Cloud Platform installation and re-
turns its object reference. However, this call in itself does not have any side-effects on the
running VM (that is, if you go and look inside the running VM you will see that the block
device has not been created). The fact that the VBD object exists but that the block device
in the guest is not active, is reflected by the fact that the VBD object's currently_attached
field is set to false.

Figure 3.2. A VM object with 2 associated VDIs

A VM object with 2 associated VDIs

For expository purposes, Figure 3.2, “A VM object with 2 associated VDIs” presents a graph-
ical example that shows the relationship between VMs, VBDs, VDIs and SRs. In this in-
stance a VM object has 2 attached VDIs: there are 2 VBD objects that form the connections
between the VM object and its VDIs; and the VDIs reside within the same SR.

Hotplugging the VBD

If we rebooted the VM at this stage then, after rebooting, the block device corresponding to
the VBD would appear: on boot, Xen Cloud Platform queries all VBDs of a VM and actively
attaches each of the corresponding VDIs.

Rebooting the VM is all very well, but recall that we wanted to attach a newly created blank
disk to a running VM. This can be achieved by invoking the plug method on the newly
created VBD object. When the plug call returns successfully, the block device to which the
VBD relates will have appeared inside the running VM -- i.e. from the perspective of the
running VM, the guest operating system is led to believe that a new disk device has just been
hot plugged. Mirroring this fact in the managed world of the API, the currently_attached
field of the VBD is set to true.

Unsurprisingly, the VBD plug method has a dual called "unplug". Invoking the unplug
method on a VBD object causes the associated block device to be hot unplugged from a
running VM, setting the currently_attached field of the VBD object to false accordingly.

19

Creating and attaching Network Devices to VMs

The API calls involved in configuring virtual network interfaces in VMs are similar in many
respects to the calls involved in configuring virtual disk devices. For this reason we will
not run through a full example of how one can create network interfaces using the API
object-model; instead we will use this section just to outline briefly the symmetry between
virtual networking device and virtual storage device configuration.

The networking analogue of the VBD class is the VIF class. Just as a VBD is the API
representation of a block device inside a VM, a VIF (Virtual network InterFace) is the API
representation of a network device inside a VM. Whereas VBDs associate VM objects with
VDI objects, VIFs associate VM objects with Network objects. Just like VBDs, VIFs have
a currently_attached field that determines whether or not the network device (inside the
guest) associated with the VIF is currently active or not. And as we saw with VBDs, at VM
boot-time the VIFs of the VM are queried and a corresponding network device for each
created inside the booting VM. Similarly, VIFs also have plug and unplug methods for hot
plugging/unplugging network devices in/out of running VMs.

Host configuration for networking and storage

We have seen that the VBD and VIF classes are used to manage configuration of block
devices and network devices (respectively) inside VMs. To manage host configuration of
storage and networking there are two analogous classes: PBD (Physical Block Device) and
PIF (Physical [network] InterFace).

Host storage configuration: PBDs

Let us start by considering the PBD class. A PBD_create() call takes a number of param-
eters including:

Parameter Description

host physical machine on which the PBD is available

SR the Storage Repository that the PBD connects to

device_config a string-to-string map that is provided to the host's SR-back-
end-driver, containing the low-level parameters required to
configure the physical storage device(s) on which the SR is
to be realized. The specific contents of the device_config
field depend on the type of the SR to which the PBD is con-
nected. (Executing xe sm-list will show a list of possible SR
types; the configuration field in this enumeration specifies the
device_config parameters that each SR type expects.)

For example, imagine we have an SR object s of type "nfs" (representing a directory on an
NFS filer within which VDIs are stored as VHD files); and let's say that we want a host, h,
to be able to access s. In this case we invoke PBD.create() specifying host h, SR s, and a
value for the device_config parameter that is the following map:

20

("server", "my_nfs_server.example.com"), ("serverpath", "/scratch/
mysrs/sr1")

This tells the Xen Cloud Platform Host that SR s is accessible on host h, and further that to
access SR s, the host needs to mount the directory /scratch/mysrs/sr1 on the NFS
server named my_nfs_server.example.com.

Like VBD objects, PBD objects also have a field called currently_attached. Storage
repositories can be attached and detached from a given host by invoking PBD.plug and
PBD.unplug methods respectively.

Host networking configuration: PIFs

Host network configuration is specified by virtue of PIF objects. If a PIF object connects a
network object, n, to a host object h, then the network corresponding to n is bridged onto
a physical interface (or a physical interface plus a VLAN tag) specified by the fields of the
PIF object.

For example, imagine a PIF object exists connecting host h to a network n, and that device
field of the PIF object is set to eth0. This means that all packets on network n are bridged
to the NIC in the host corresponding to host network device eth0.

Exporting and Importing VMs

VMs can be exported to a file and later imported to any Xen Cloud Platform host. The export
protocol is a simple HTTP(S) GET, which should be performed on the master if the VM is on
a pool member. Authorization is either standard HTTP basic authentication, or if a session
has already been obtained, this can be used. The VM to export is specified either by UUID
or by reference. To keep track of the export, a task can be created and passed in using
its reference. The request might result in a redirect if the VM's disks are only accessible
on a pool member.

The following arguments are passed on the command line:

Argument Description

session_id the reference of the session being used to authenticate; re-
quired only when not using HTTP basic authentication

task_id the reference of the task object with which to keep track of
the operation; optional, required only if you have created a
task object to keep track of the export

ref the reference of the VM; required only if not using the UUID

uuid the UUID of the VM; required only if not using the reference

For example, using the Linux command line tool cURL:

curl http://root:foo@myxenserver1/export?uuid=<vm_uuid> -o <exportfile>

21

will export the specified VM to the file exportfile.

To export just the metadata, use the URI http://server/export_metadata.

The import protocol is similar, using HTTP(S) PUT. The session_id and task_id argu-
ments are as for the export. The ref and uuid are not used; a new reference and uuid will
be generated for the VM. There are some additional parameters:

Argument Description

restore if true, the import is treated as replacing the original VM - the
implication of this currently is that the MAC addresses on the
VIFs are exactly as the export was, which will lead to conflicts
if the original VM is still being run.

force if true, any checksum failures will be ignored (the default is to
destroy the VM if a checksum error is detected)

sr_uuid the reference of an SR into which the VM should be
imported. The default behavior is to import into the
Pool.default_SR.

For example, again using cURL:

curl -T <exportfile> http://root:foo@myxenserver2/import

will import the VM to the default SR on the server.

Note

Note that if no default SR has been set, and no sr_uuid is specified, the error message
"DEFAULT_SR_NOT_FOUND" is returned.

Another example:

curl -T <exportfile> http://root:foo@myxenserver2/import?sr_uuid=<uuid_of_sr>

will import the VM to the specified SR on the server.

To import just the metadata, use the URI http://server/import_metadata

Xen Virtual Appliance (XVA) VM Import Format

Xen Cloud Platform supports a human-readable legacy VM input format called XVA. This
section describes the syntax and structure of XVA.

An XVA consists of a directory containing XML metadata and a set of disk images. A VM
represented by an XVA is not intended to be directly executable. Data within an XVA pack-
age is compressed and intended for either archiving on permanent storage or for being

22

transmitted to a VM server - such as a Xen Cloud Platform host - where it can be decom-
pressed and executed.

XVA is a hypervisor-neutral packaging format; it should be possible to create simple tools
to instantiate an XVA VM on any other platform. XVA does not specify any particular run-
time format; for example disks may be instantiated as file images, LVM volumes, QCoW
images, VMDK or VHD images. An XVA VM may be instantiated any number of times, each
instantiation may have a different runtime format.

XVA does not:

• specify any particular serialization or transport format

• provide any mechanism for customizing VMs (or templates) on install

• address how a VM may be upgraded post-install

• define how multiple VMs, acting as an appliance, may communicate

These issues are all addressed by the related Open Virtual Appliance specification.

An XVA is a directory containing, at a minimum, a file called ova.xml. This file describes
the VM contained within the XVA and is described in Section 3.2. Disks are stored within
sub-directories and are referenced from the ova.xml. The format of disk data is described
later in Section 3.3.

The following terms will be used in the rest of the chapter:

• HVM: a mode in which unmodified OS kernels run with the help of virtualization support
in the hardware.

• PV: a mode in which specially modified "paravirtualized" kernels run explicitly on top of
a hypervisor without requiring hardware support for virtualization.

The "ova.xml" file contains the following elements:

<appliance version="0.1">

The number in the attribute "version" indicates the version of this specification to which the
XVA is constructed; in this case version 0.1. Inside the <appliance> there is exactly one
<vm>: (in the OVA specification, multiple <vm>s are permitted)

<vm name="name">

Each <vm> element describes one VM. The "name" attribute is for future internal use only
and must be unique within the ova.xml file. The "name" attribute is permitted to be any valid
UTF-8 string. Inside each <vm> tag are the following compulsory elements:

<label>... text ... </label>

A short name for the VM to be displayed in a UI.

<shortdesc> ... description ... </shortdesc>

23

A description for the VM to be displayed in the UI. Note that for both <label> and <shortde-
sc> contents, leading and trailing whitespace will be ignored.

<config mem_set="268435456" vcpus="1"/>

The <config> element has attributes which describe the amount of memory in bytes
(mem_set) and number of CPUs (VCPUs) the VM should have.

Each <vm> has zero or more <vbd> elements representing block devices which look like
the following:

<vbd device="sda" function="root" mode="w" vdi="vdi_sda"/>

The attributes have the following meanings:

device name of the physical device to expose to the VM. For linux guests we use
"sd[a-z]" and for windows guests we use "hd[a-d]".

function if marked as "root", this disk will be used to boot the guest. (NB this does not
imply the existence of the Linux root i.e. / filesystem) Only one device should
be marked as "root". See Section 3.4 describing VM booting. Any other string
is ignored.

mode either "w" or "ro" if the device is to be read/write or read-only

vdi the name of the disk image (represented by a <vdi> element) to which this
block device is connected

Each <vm> may have an optional <hacks> section like the following: <hacks is_hvm="false"
kernel_boot_cmdline="root=/dev/sda1 ro"/> The <hacks> element is present in the XVA
files generated by Xen Cloud Platform but will be removed in future. The attribute "is_hvm"
is either "true" or "false", depending on whether the VM should be booted in HVM or not. The
"kernel_boot_cmdline" contains additional kernel commandline arguments when booting a
guest using pygrub.

In addition to a <vm> element, the <appliance> will contain zero or more <vdi> elements
like the following:

<vdi name="vdi_sda" size="5368709120" source="file://sda"
type="dir-gzipped-chunks">

Each <vdi> corresponds to a disk image. The attributes have the following meanings:

• name: name of the VDI, referenced by the vdi attribute of <vbd> elements. Any valid
UTF-8 string is permitted.

• size: size of the required image in bytes

• source: a URI describing where to find the data for the image, only file:// URIs are currently
permitted and must describe paths relative to the directory containing the ova.xml

• type: describes the format of the disk data (see Section 3.3)

A single disk image encoding is specified in which has type "dir-gzipped-chunks": Each
image is represented by a directory containing a sequence of files as follows:

24

-rw-r--r-- 1 dscott xendev 458286013 Sep 18 09:51 chunk000000000.gz
-rw-r--r-- 1 dscott xendev 422271283 Sep 18 09:52 chunk000000001.gz
-rw-r--r-- 1 dscott xendev 395914244 Sep 18 09:53 chunk000000002.gz
-rw-r--r-- 1 dscott xendev 9452401 Sep 18 09:53 chunk000000003.gz
-rw-r--r-- 1 dscott xendev 1096066 Sep 18 09:53 chunk000000004.gz
-rw-r--r-- 1 dscott xendev 971976 Sep 18 09:53 chunk000000005.gz
-rw-r--r-- 1 dscott xendev 971976 Sep 18 09:53 chunk000000006.gz
-rw-r--r-- 1 dscott xendev 971976 Sep 18 09:53 chunk000000007.gz
-rw-r--r-- 1 dscott xendev 573930 Sep 18 09:53 chunk000000008.gz

Each file (named "chunk-XXXXXXXXX.gz") is a gzipped file containing exactly 1e9 bytes
(1GB, not 1GiB) of raw block data. The small size was chosen to be safely under the maxi-
mum file size limits of several filesystems. If the files are gunzipped and then concatenated
together, the original image is recovered.

Xen Cloud Platform provides two mechanisms for booting a VM: (i) using a paravirtualized
kernel extracted through pygrub; and (ii) using HVM. The current implementation uses the
"is_hvm" flag within the <hacks> section to decide which mechanism to use.

This rest of this section describes a very simple Debian VM packaged as an XVA. The VM
has two disks, one with size 5120MiB and used for the root filesystem and used to boot
the guest using pygrub and the other of size 512MiB which is used for swap. The VM has
512MiB of memory and uses one virtual CPU.

At the topmost level the simple Debian VM is represented by a single directory:

$ ls -l
total 4
drwxr-xr-x 3 dscott xendev 4096 Oct 24 09:42 very simple Debian VM

Inside the main XVA directory are two sub-directories - one per disk - and the single file:
ova.xml:

$ ls -l very\ simple\ Debian\ VM/
total 8
-rw-r--r-- 1 dscott xendev 1016 Oct 24 09:42 ova.xml
drwxr-xr-x 2 dscott xendev 4096 Oct 24 09:42 sda
drwxr-xr-x 2 dscott xendev 4096 Oct 24 09:53 sdb

Inside each disk sub-directory are a set of files, each file contains 1GB of raw disk block
data compressed using gzip:

$ ls -l very\ simple\ Debian\ VM/sda/
total 2053480
-rw-r--r-- 1 dscott xendev 202121645 Oct 24 09:43 chunk-000000000.gz
-rw-r--r-- 1 dscott xendev 332739042 Oct 24 09:45 chunk-000000001.gz
-rw-r--r-- 1 dscott xendev 401299288 Oct 24 09:48 chunk-000000002.gz
-rw-r--r-- 1 dscott xendev 389585534 Oct 24 09:50 chunk-000000003.gz
-rw-r--r-- 1 dscott xendev 624567877 Oct 24 09:53 chunk-000000004.gz
-rw-r--r-- 1 dscott xendev 150351797 Oct 24 09:54 chunk-000000005.gz

$ ls -l very\ simple\ Debian\ VM/sdb
total 516
-rw-r--r-- 1 dscott xendev 521937 Oct 24 09:54 chunk-000000000.gz

25

The example simple Debian VM would have an XVA file like the following:

<?xml version="1.0" ?>
<appliance version="0.1">
 <vm name="vm">
 <label>
 very simple Debian VM
 </label>
 <shortdesc>
 the description field can contain any valid UTF-8
 </shortdesc>
 <config mem_set="536870912" vcpus="1"/>
 <hacks is_hvm="false" kernel_boot_cmdline="root=/dev/sda1 ro ">
 <!--This section is temporary and will be ignored in future. Attribute
is_hvm ("true" or "false") indicates whether the VM will be booted in HVM mode. In
future this will be autodetected. Attribute kernel_boot_cmdline contains the kernel
commandline for the case where a proper grub menu.lst is not present. In future
booting shall only use pygrub.-->
 </hacks>
 <vbd device="sda" function="root" mode="w" vdi="vdi_sda"/>
 <vbd device="sdb" function="swap" mode="w" vdi="vdi_sdb"/>
 </vm>
 <vdi name="vdi_sda" size="5368709120" source="file://sda" type="dir-gzippedchunks"/>
 <vdi name="vdi_sdb" size="536870912" source="file://sdb" type="dir-gzippedchunks"/>
</appliance>

XML-RPC notes

Datetimes

The API deviates from the XML-RPC specification in handling of datetimes. The API ap-
pends a "Z" to the end of datetime strings, which is meant to indicate that the time is ex-
pressed in UTC.

Where to look next
In this chapter we have presented a brief high-level overview of the API and its object-mod-
el. The aim here is not to present the detailed semantics of the API, but just to provide
enough background for you to start reading the code samples of the next chapter and to find
your way around the more detailed Xen Cloud Platform API Reference reference document.

There are a number of places you can find more information:

• The Xen Cloud Platform Administrators Guide contains an overview of the xe CLI. Since
a good deal of xe commands are a thin veneer over the API, playing with xe is a good
way to start finding your way around the API object model described in this chapter.

• The code samples in the next chapter provide some concrete instances of API coding
in a variety of client languages.

• The Xen Cloud Platform API Reference reference document provides a more detailed
description of the API semantics as well as describing the format of XML/RPC messages
on the wire.

26

• There are a few scripts that use the API in the Xen Cloud Platform Host dom0 itself. For
example, "/opt/xensource/libexec/shutdown" is a python program that cleanly shuts VMs
down. This script is invoked when the host itself is shut down.

27

Chapter 4. Using the API
This chapter describes how to use the Xen Cloud Platform Management API from real
programs to manage Xen Cloud Platform Hosts and VMs. The chapter begins with a walk-
through of a typical client application and demonstrates how the API can be used to perform
common tasks. Example code fragments are given in python syntax but equivalent code
in C and C# would look very similar. The language bindings themselves are discussed
afterwards and the chapter finishes with walk-throughs of two complete examples included
in the SDK.

Anatomy of a typical application

This section describes the structure of a typical application using the Xen Cloud Platform
Management API. Most client applications begin by connecting to a Xen Cloud Platform
Host and authenticating (e.g. with a username and password). Assuming the authentication
succeeds, the server will create a "session" object and return a reference to the client. This
reference will be passed as an argument to all future API calls. Once authenticated, the
client may search for references to other useful objects (e.g. Xen Cloud Platform Hosts,
VMs, etc.) and invoke operations on them. Operations may be invoked either synchronously
or asynchronously; special task objects represent the state and progress of asynchronous
operations. These application elements are all described in detail in the following sections.

Choosing a low-level transport

API calls can be issued over two transports:

• SSL-encrypted TCP on port 443 (https) over an IP network

• plaintext over a local Unix domain socket: /var/xapi/xapi

The SSL-encrypted TCP transport is used for all off-host traffic while the Unix domain
socket can be used from services running directly on the Xen Cloud Platform Host itself.
In the SSL-encrypted TCP transport, all API calls should be directed at the Resource Pool
master; failure to do so will result in the error HOST_IS_SLAVE, which includes the IP
address of the master as an error parameter.

Because the host that is master can change, especially if HA is enabled on a pool, clients
must implement the following steps to detect a master host change and connect to the new
master as required:

Handling pool master changes

1. Subscribe to updates in the list of hosts servers, and maintain a current list of hosts
in the pool

2. If the connection to the pool master fails to respond, attempt to connect to all hosts in
the list until one responds

3. The first host to respond will return the HOST_IS_SLAVE error message, which con-
tains the identity of the new pool master (unless of course the host is the new master)

28

4. Connect to the new master

Note

As a special-case, all messages sent through the Unix domain socket are transparently
forwarded to the correct node.

Authentication and session handling

The vast majority of API calls take a session reference as their first parameter; failure to
supply a valid reference will result in a SESSION_INVALID error being returned. Acquire
a session reference by supplying a username and password to the login_with_password
function.

Note

As a special-case, if this call is executed over the local Unix domain socket then the user-
name and password are ignored and the call always succeeds.

Every session has an associated "last active" timestamp which is updated on every API
call. The server software currently has a built-in limit of 200 active sessions and will remove
those with the oldest "last active" field if this limit is exceeded. In addition all sessions whose
"last active" field is older than 24 hours are also removed. Therefore it is important to:

• Remember to log out of active sessions to avoid leaking them; and

• Be prepared to log in again to the server if a SESSION_INVALID error is caught.

In the following fragment a connection is established over the Unix domain socket and a
session is created:

import XenAPI

 session = XenAPI.xapi_local()
 try:
 session.xenapi.login_with_password("root", "")
 ...
 finally:
 session.xenapi.session.logout()

Finding references to useful objects

Once an application has authenticated the next step is to acquire references to objects in
order to query their state or invoke operations on them. All objects have a set of "implicit"
messages which include the following:

• get_by_name_label : return a list of all objects of a particular class with a particular label;

• get_by_uuid : return a single object named by its UUID;

• get_all : return a set of references to all objects of a particular class; and

29

• get_all_records : return a map of reference to records for each object of a particular
class.

For example, to list all hosts:

hosts = session.xenapi.host.get_all()

To find all VMs with the name "my first VM":

vms = session.xenapi.VM.get_by_name_label('my first VM')

Note

Object name_label fields are not guaranteed to be unique and so the
get_by_name_label API call returns a set of references rather than a single reference.

In addition to the methods of finding objects described above, most objects also contain
references to other objects within fields. For example it is possible to find the set of VMs
running on a particular host by calling:

vms = session.xenapi.host.get_resident_VMs(host)

Invoking synchronous operations on objects

Once object references have been acquired, operations may be invoked on them. For ex-
ample to start a VM:

session.xenapi.VM.start(vm, False, False)

All API calls are by default synchronous and will not return until the operation has completed
or failed. For example in the case of VM.start the call does not return until the VM has
started booting.

Note

When the VM.start call returns the VM will be booting. To determine when the boot-
ing has finished, wait for the in-guest agent to report internal statistics through the
VM_guest_metrics object.

Using Tasks to manage asynchronous operations

To simplify managing operations which take quite a long time (e.g. VM.clone and VM.copy)
functions are available in two forms: synchronous (the default) and asynchronous. Each
asynchronous function returns a reference to a task object which contains information about
the in-progress operation including:

• whether it is pending

30

• whether it is has succeeded or failed

• progress (in the range 0-1)

• the result or error code returned by the operation

An application which wanted to track the progress of a VM.clone operation and display a
progress bar would have code like the following:

vm = session.xenapi.VM.get_by_name_label('my vm')
task = session.xenapi.Async.VM.clone(vm)
while session.xenapi.task.get_status(task) == "pending":
 progress = session.xenapi.task.get_progress(task)
 update_progress_bar(progress)
 time.sleep(1)
session.xenapi.task.destroy(task)

Note

Note that a well-behaved client should remember to delete tasks created by asynchronous
operations when it has finished reading the result or error. If the number of tasks exceeds
a built-in threshold then the server will delete the oldest of the completed tasks.

Subscribing to and listening for events

With the exception of the task and metrics classes, whenever an object is modified the
server generates an event. Clients can subscribe to this event stream on a per-class basis
and receive updates rather than resorting to frequent polling. Events come in three types:

• add - generated when an object has been created;

• del - generated immediately before an object is destroyed; and

• mod - generated when an object's field has changed.

Events also contain a monotonically increasing ID, the name of the class of object and a
snapshot of the object state equivalent to the result of a get_record().

Clients register for events by calling event.register() with a list of class names or the special
string "*". Clients receive events by executing event.next() which blocks until events are
available and returns the new events.

Note

Since the queue of generated events on the server is of finite length a very slow client might
fail to read the events fast enough; if this happens an EVENTS_LOST error is returned.
Clients should be prepared to handle this by re-registering for events and checking that
the condition they are waiting for hasn't become true while they were unregistered.

The following python code fragment demonstrates how to print a summary of every
event generated by a system: (similar code exists in /SDK/client-examples/python/
watch-all-events.py)

31

fmt = "%8s %20s %5s %s"
session.xenapi.event.register(["*"])
while True:
 try:
 for event in session.xenapi.event.next():
 name = "(unknown)"
 if "snapshot" in event.keys():
 snapshot = event["snapshot"]
 if "name_label" in snapshot.keys():
 name = snapshot["name_label"]
 print fmt % (event['id'], event['class'], event['operation'], name)
 except XenAPI.Failure, e:
 if e.details == ["EVENTS_LOST"]:
 print "Caught EVENTS_LOST; should reregister"

Language bindings
Although it is possible to write applications which use the Xen Cloud Platform Management
API directly through raw XML-RPC calls, the task of developing third-party applications is
greatly simplified through the use of a language binding which exposes the individual API
calls as first-class functions in the target language. The SDK includes language bindings
and example code for the C, C# and python programming languages and for both Linux
and Windows clients.

C

The SDK includes the source to the C language binding in the directory /SDK/client-
examples/c together with a Makefile which compiles the binding into a library. Every API
object is associated with a header file which contains declarations for all that object's API
functions; for example the type definitions and functions required to invoke VM operations
are all contained with xen_vm.h.

C binding dependencies

Platform supported: Linux

Library: The language binding is generated as a libxen.a that is
linked by C programs.

Dependencies: • XML library (libxml2.so on GNU Linux)

• Curl library (libcurl2.so)

One simple example is included within the SDK called test_vm_ops. The example demon-
strates how to query the capabilities of a host, create a VM, attach a fresh blank disk image
to the VM and then perform various powercycle operations.

C#

The C# bindings are contained within the directory /SDK/client-examples/csharp/
XenSdk.net and include project files suitable for building under Microsoft Visual Studio.

32

Every API object is associated with one C# file; for example the functions implementing the
VM operations are contained within the file VM.cs.

C# binding dependencies

Platform supported: Windows with .NET version 2.0

Library: The language binding is generated as a Dynamic Link Library
Xenapi.dll that is linked by C# programs

Dependencies: CookComputing.XMLRpcV2.dll is needed for the xenapi.dll to
be able to communicate with the xml-rpc server.

Two simple examples are included with the C# bindings in the directory /SDK/client-
examples/csharp/XenSdk.net:

• Monitor: logs into a Xen Cloud Platform Host, lists all the VM records, filters out the
templates, clones a VM from one template, configures the name and description of the
VM before finally power-cycling the VM; and

• VM-Lifecycle: logs into a Xen Cloud Platform Host, queries properties of a host, lists all
Storage Repositories, lists all VMs and prints various attributes.

Python

The python bindings are contained within a single file: /SDK/client-exam-
ples/python/XenAPI.py.

Python binding dependencies

Platform supported: Linux

Library: XenAPI.py

Dependencies: None

The SDK includes 7 python examples:

• fixpbds.py - reconfigures the settings used to access shared storage;

• install.py - installs a Debian VM, connects it to a network, starts it up and waits for
it to report its IP address;

• license.py - uploads a fresh license to a Xen Cloud Platform Host;

• permute.py - selects a set of VMs and uses XenMotion to move them simultaneously
between hosts;

• powercycle.py - selects a set of VMs and powercycles them;

• shell.py - a simple interactive shell for testing;

33

• vm_start_async.py - demonstrates how to invoke operations asynchronously;

• watch-all-events.py - registers for all events and prints details when they occur.

Command Line Interface (CLI)

Rather than using raw XML-RPC or one of the supplied language bindings, third-party soft-
ware developers may instead integrate with Xen Cloud Platform Hosts by using the XE
CLI xe.exe.

CLI dependencies

Platform supported: Linux and Windows

Library: None

Binary: xe[.exe]

Dependencies: None

The CLI allows almost every API call to be directly invoked from a script or other program,
silently taking care of the required session management. The XE CLI syntax and capabilities
are described in detail in Chapter 5 of the Xen Cloud Platform Administrator's Guide. The
SDK contains 3 example bash shell scripts which demonstrate CLI usage. These are:

• install-debian - installs a Debian Etch 4.0 VM, adds a network interface, starts it booting
and waits for the IP address to be reported;

• clone-vms - shuts down a VM if it is running, clones it and starts it up again;

• suspend-resume - suspends a running VM and then resumes it.

Note

When running the CLI from a Xen Cloud Platform Host console, tab-completion of both
command names and arguments is available.

Complete application examples

This section describes two complete examples of real programs using the API. The appli-
cation source code is contained within the SDK.

Simultaneously migrating VMs using XenMotion

This python example (contained in /SDK/client-examples/python/permute.py)
demonstrates how to use XenMotion to move VMs simultaneously between hosts in a Re-
source Pool. The example makes use of asynchronous API calls and shows how to wait
for a set of tasks to complete.

34

The program begins with some standard boilerplate and imports the API bindings module

import sys, time
import XenAPI

Next the commandline arguments containing a server URL, username, password and a
number of iterations are parsed. The username and password are used to establish a ses-
sion which is passed to the function main, which is called multiple times in a loop. Note the
use of try: finally: to make sure the program logs out of its session at the end.

if __name__ == "__main__":
 if len(sys.argv) <> 5:
 print "Usage:"
 print sys.argv[0], " <url> <username> <password> <iterations>"
 sys.exit(1)
 url = sys.argv[1]
 username = sys.argv[2]
 password = sys.argv[3]
 iterations = int(sys.argv[4])
 # First acquire a valid session by logging in:
 session = XenAPI.Session(url)
 session.xenapi.login_with_password(username, password)
 try:
 for i in range(iterations):
 main(session, i)
 finally:
 session.xenapi.session.logout()

The main function examines each running VM in the system, taking care to filter out control
domains (which are part of the system and not controllable by the user). A list of running
VMs and their current hosts is constructed.

def main(session, iteration):
 # Find a non-template VM object
 all = session.xenapi.VM.get_all()
 vms = []
 hosts = []
 for vm in all:
 record = session.xenapi.VM.get_record(vm)
 if not(record["is_a_template"]) and \
 not(record["is_control_domain"]) and \
 record["power_state"] == "Running":
 vms.append(vm)
 hosts.append(record["resident_on"])
 print "%d: Found %d suitable running VMs" % (iteration, len(vms))

Next the list of hosts is rotated:

use a rotation as a permutation
 hosts = [hosts[-1]] + hosts[:(len(hosts)-1)]

Each VM is then moved using XenMotion to the new host under this rotation (i.e. a VM
running on host at position 2 in the list will be moved to the host at position 1 in the list

35

etc.) In order to execute each of the movements in parallel, the asynchronous version of
the VM.pool_migrate is used and a list of task references constructed. Note the live
flag passed to the VM.pool_migrate; this causes the VMs to be moved while they are still
running.

tasks = []
 for i in range(0, len(vms)):
 vm = vms[i]
 host = hosts[i]
 task = session.xenapi.Async.VM.pool_migrate(vm, host, { "live": "true" })
 tasks.append(task)

The list of tasks is then polled for completion:

finished = False
 records = {}
 while not(finished):
 finished = True
 for task in tasks:
 record = session.xenapi.task.get_record(task)
 records[task] = record
 if record["status"] == "pending":
 finished = False
 time.sleep(1)

Once all tasks have left the pending state (i.e. they have successfully completed, failed or
been cancelled) the tasks are polled once more to see if they all succeeded:

allok = True
 for task in tasks:
 record = records[task]
 if record["status"] <> "success":
 allok = False

If any one of the tasks failed then details are printed, an exception is raised and the task
objects left around for further inspection. If all tasks succeeded then the task objects are
destroyed and the function returns.

if not(allok):
 print "One of the tasks didn't succeed at", \
 time.strftime("%F:%HT%M:%SZ", time.gmtime())
 idx = 0
 for task in tasks:
 record = records[task]
 vm_name = session.xenapi.VM.get_name_label(vms[idx])
 host_name = session.xenapi.host.get_name_label(hosts[idx])
 print "%s : %12s %s -> %s [status: %s; result = %s; error = %s]" % \
 (record["uuid"], record["name_label"], vm_name, host_name, \
 record["status"], record["result"], repr(record["error_info"]))
 idx = idx + 1
 raise "Task failed"
 else:
 for task in tasks:
 session.xenapi.task.destroy(task)

36

Cloning a VM using the XE CLI

This example (contained in /SDK/client-examples/bash-cli/clone-vms) is a
bash script which uses the XE CLI to clone a VM taking care to shut it down first if it is
powered on.

The example begins with some boilerplate which first checks if the environment variable XE
has been set: if it has it assumes that it points to the full path of the CLI, else it is assumed
that the XE CLI is on the current path. Next the script prompts the user for a server name,
username and password:

Allow the path to the 'xe' binary to be overridden by the XE environment variable
if [-z "${XE}"]; then
 XE=xe
fi

if [! -e "${HOME}/.xe"]; then
 read -p "Server name: " SERVER
 read -p "Username: " USERNAME
 read -p "Password: " PASSWORD
 XE="${XE} -s ${SERVER} -u ${USERNAME} -pw ${PASSWORD}"
fi

Next the script checks its commandline arguments. It requires exactly one: the UUID of the
VM which is to be cloned:

Check if there's a VM by the uuid specified
${XE} vm-list params=uuid | grep -q " ${vmuuid}$"
if [$? -ne 0]; then
 echo "error: no vm uuid \"${vmuuid}\" found"
 exit 2
fi

The script then checks the power state of the VM and if it is running, it attempts a clean
shutdown. The event system is used to wait for the VM to enter state "Halted".

Note

The XE CLI supports a command-line argument --minimal which causes it to print its
output without excess whitespace or formatting, ideal for use from scripts. If multiple values
are returned they are comma-separated.

Check the power state of the vm
name=$(${XE} vm-list uuid=${vmuuid} params=name-label --minimal)
state=$(${XE} vm-list uuid=${vmuuid} params=power-state --minimal)
wasrunning=0

If the VM state is running, we shutdown the vm first
if ["${state}" = "running"]; then
 ${XE} vm-shutdown uuid=${vmuuid}
 ${XE} event-wait class=vm power-state=halted uuid=${vmuuid}
 wasrunning=1
fi

37

The VM is then cloned and the new VM has its name_label set to cloned_vm.

Clone the VM
newuuid=$(${XE} vm-clone uuid=${vmuuid} new-name-label=cloned_vm)

Finally, if the original VM had been running and was shutdown, both it and the new VM
are started.

If the VM state was running before cloning, we start it again
along with the new VM.
if ["$wasrunning" -eq 1]; then
 ${XE} vm-start uuid=${vmuuid}
 ${XE} vm-start uuid=${newuuid}
fi

39

Chapter 5. Using HTTP to interact
with Xen Cloud Platform

Xen Cloud Platform exposes an HTTP interface on each host, that can be used to perform
various operations. This chapter describes the available mechanisms.

VM Import and Export

Because the import and export of VMs can take some time to complete, an asynchronous
HTTP interface to the import and export operations is provided. To perform an export using
the Xen Cloud Platform API, construct an HTTP GET call providing a valid session ID, task
ID and VM UUID, as shown in the following pseudo code:

task = Task.create()
result = HTTP.get(
 server, 80, "/export?session_id=<session_id>&task_id=<task_id>&ref=<vm_uuid>");

For the import operation, use an HTTP PUT call as demonstrated in the following pseudo
code:

task = Task.create()
result = HTTP.put(
 server, 80, "/import?session_id=<session_id>&task_id=<task_id>&ref=<vm_uuid>");

Getting Xen Cloud Platform Performance Statistics

Xen Cloud Platform records statistics about the performance of various aspects of your
Xen Cloud Platform installation. The metrics are stored persistently for long term access
and analysis of historical trends. Where storage is available to a VM, the statistics are writ-
ten to disk when a VM is shut down. Statistics are stored in RRDs (Round Robin Databas-
es), which are maintained for individual VMs (including the control domain) and the server.
RRDs are resident on the server on which the VM is running, or the pool master when the
VM is not running. The RRDs are also backed up every day.

Warning

In earlier versions of the Xen Cloud Platform API, instantaneous performance metrics
could be obtained using the VM_metrics, VM_guest_metrics, host_metrics methods
and associated methods. These methods has been deprecated in favor of using the http
handler described in this chapter to download the statistics from the RRDs on the VMs
and servers. Note that by default the legacy metrics will return zeroes. To revert to peri-
odic statistical polling as present in earlier versions of Xen Cloud Platform, set the oth-
er-config:rrd_update_interval=<interval> parameters on your host to one of
the following values, and restart your host:

never This is the default, meaning no periodic polling is performed.

1 Polling is performed every 5 seconds.

40

2 Polling is performed every minute.

By default, the older metrics APIs will not return any values, and so this key must be
enabled to run monitoring clients which use the legacy monitoring protocol.

Statistics are persisted for a maximum of one year, and are stored at different granularities.
The average and most recent values are stored at intervals of:

• 5 seconds for the past 10 minutes

• one minute for the past 2 hours

• one hour for the past week

• one day for the past year

RRDs are saved to disk as uncompressed XML. The size of each RRD when written to disk
ranges from 200KiB to approximately 1.2MiB when the RRD stores the full year of statistics.

Warning

If statistics cannot be written to disk, for example when a disk is full, statistics will be lost
and the last saved version of the RRD will be used.

Statistics can be downloaded over HTTP in XML format, for example using wget.
See http://oss.oetiker.ch/rrdtool/doc/rrddump.en.html and http://oss.oetiker.ch/rrdtool/doc/
rrdxport.en.html for information about the XML format. HTTP authentication can take the
form of a username and password or a session token. Parameters are appended to the
URL following a question mark (?) and separated by ampersands (&).

To obtain an update of all VM statistics on a host, the URL would be of the form:

http://<username>:<password>@<host>/rrd_updates?start=<secondssinceepoch>

This request returns data in an rrdtool xport style XML format, for every VM resident
on the particular host that is being queried. To differentiate which column in the export is
associated with which VM, the legend field is prefixed with the UUID of the VM.

To obtain host updates too, use the query parameter host=true:

http://<username>:<password>@<host>/rrd_updates?start=<secondssinceepoch>&host=true

The step will decrease as the period decreases, which means that if you request statistics
for a shorter time period you will get more detailed statistics.

Additional rrd_updates parameters

cf=<ave|min|max> the data consolidation mode

interval=<interval> the interval between values to be reported

Note

By default only ave statistics are available. To obtain min and max statistics for a VM, run
the following command:

http://oss.oetiker.ch/rrdtool/doc/rrddump.en.html
http://oss.oetiker.ch/rrdtool/doc/rrdxport.en.html
http://oss.oetiker.ch/rrdtool/doc/rrdxport.en.html

41

xe pool-param-set uuid=<pool_uuid> other-config:create_min_max_in_new_VM_RRDs

To obtain all statistics for a host:

http://<username:password@host>/host_rrd

To obtain all statistics for a VM:

http://<username:password@host>/vm_rrd?uuid=<vm_uuid>

43

Chapter 6. Xen Cloud Platform API
extensions

The XenAPI is a general and comprehensive interface to managing the life-cycles of Virtual
Machines, and offers a lot of flexibility in the way that XenAPI providers may implement
specific functionality (e.g. storage provisioning, or console handling). Xen Cloud Platform
has several extensions which provide useful functionality used in our own XenCenter inter-
face. The workings of these mechanisms are described in this chapter.

Extensions to the XenAPI are often provided by specifying other-config map keys to
various objects. The use of this parameter indicates that the functionality is supported for
that particular release of Xen Cloud Platform, but not as a long-term feature. We are con-
stantly evaluating promoting functionality into the API, but this requires the nature of the
interface to be well-understood. Developer feedback as to how you are using some of these
extensions is always welcome to help us make these decisions.

VM console forwarding
Most XenAPI graphical interfaces will want to gain access to the VM consoles, in order
to render them to the user as if they were physical machines. There are several types of
consoles available, depending on the type of guest or if the physical host console is being
accessed:

Console access

Operating System Text Graphical Optimized graphi-
cal

Windows No VNC, using an API
call

RDP, directly from
guest

Linux Yes, through VNC
and an API call

No VNC, directly from
guest

Physical Host Yes, through VNC
and an API call

No No

Hardware-assisted VMs, such as Windows, directly provide a graphical console over VNC.
There is no text-based console, and guest networking is not necessary to use the graphical
console. Once guest networking has been established, it is more efficient to setup Remote
Desktop Access and use an RDP client to connect directly (this must be done outside of
the XenAPI).

Paravirtual VMs, such as Linux guests, provide a native text console directly. Xen Cloud
Platform provides a utility (called vncterm) to convert this text-based console into a graph-
ical VNC representation. Guest networking is not necessary for this console to function. As
with Windows above, Linux distributions often configure VNC within the guest, and directly
connect to it over a guest network interface.

44

The physical host console is only available as a vt100 console, which is exposed through
the XenAPI as a VNC console by using vncterm in the control domain.

RFB (Remote Framebuffer) is the protocol which underlies VNC, specified in The RFB
Protocol. Third-party developers are expected to provide their own VNC viewers, and many
freely available implementations can be adapted for this purpose. RFB 3.3 is the minimum
version which viewers must support.

Retrieving VNC consoles using the API

VNC consoles are retrieved using a special URL passed through to the host agent. The
sequence of API calls is as follows:

1. Client to Master/443: XML-RPC: Session.login_with_password().
2. Master/443 to Client: Returns a session reference to be used with subsequent calls.

3. Client to Master/443: XML-RPC: VM.get_by_name_label().
4. Master/443 to Client: Returns a reference to a particular VM (or the "control domain" if

you want to retrieve the physical host console).

5. Client to Master/443: XML-RPC: VM.get_consoles().
6. Master/443 to Client: Returns a list of console objects associated with the VM.

7. Client to Master/443: XML-RPC: VM.get_location().
8. Returns a URI describing where the requested console is located. The URIs

are of the form: https://192.168.0.1/console?ref=OpaqueRef:c038533a-af99-a0ff-9095-
c1159f2dc6a0 .

9. Client to 192.168.0.1: HTTP CONNECT "/console?ref=(...)"

The final HTTP CONNECT is slightly non-standard since the HTTP/1.1 RFC specifies that
it should only be a host and a port, rather than a URL. Once the HTTP connect is complete,
the connection can subsequently directly be used as a VNC server without any further
HTTP protocol action.

This scheme requires direct access from the client to the control domain's IP, and will not
work correctly if there are Network Address Translation (NAT) devices blocking such con-
nectivity. You can use the CLI to retrieve the console URI from the client and perform a
connectivity check.

To retrieve a console URI using the CLI

1. Retrieve the VM UUID by running:

xe vm-list params=uuid --minimal name-label=name

2. Retrieve the console information:

xe console-list vm-uuid=uuid
uuid (RO): 714f388b-31ed-67cb-617b-0276e35155ef
vm-uuid (RO): 8acb7723-a5f0-5fc5-cd53-9f1e3a7d3069
vm-name-label (RO): etch
protocol (RO): RFB
location (RO): https://192.168.0.1/console?ref=(...)

http://www.realvnc.com/docs/rfbproto.pdf
http://www.realvnc.com/docs/rfbproto.pdf
https://192.168.0.1/console?ref=OpaqueRef:c038533a-af99-a0ff-9095-c1159f2dc6a0
https://192.168.0.1/console?ref=OpaqueRef:c038533a-af99-a0ff-9095-c1159f2dc6a0

45

Use command-line utilities like ping to test connectivity to the IP address provided in the
location field.

Disabling VNC forwarding for Linux VM

When creating and destroying Linux VMs, the host agent automatically manages the vnc-
term processes which convert the text console into VNC. Advanced users who wish to di-
rectly access the text console can disable VNC forwarding for that VM. The text console can
then only be accessed directly from the control domain directly, and graphical interfaces
such as XenCenter will not be able to render a console for that VM.

Disabling a Linux VNC console using the CLI

1. Before starting the guest, set the following parameter on the VM record:

xe vm-param-set uuid=uuid other-config:disable_pv_vnc=1

2. Start the VM.

3. Use the CLI to retrieve the underlying domain ID of the VM with:

xe vm-list params=dom-id uuid=<uuid> --minimal

4. On the host console, connect to the text console directly by:

/usr/lib/xen/bin/xenconsole <domain_id>

This configuration is an advanced procedure, and we do not recommend that the text con-
sole is directly used for heavy I/O operations. Instead, connect to the guest over SSH or
some other network-based connection mechanism.

Paravirtual Linux installation

The installation of paravirtual Linux guests is complicated by the fact that a Xen-aware
kernel must be booted, rather than simply installing the guest using hardware-assistance.
This does have the benefit of providing near-native installation speed due to the lack of
emulation overhead. Xen Cloud Platform supports the installation of several different Linux
distributions, and abstracts this process as much as possible.

To this end, a special bootloader known as eliloader is present in the control domain which
reads various other-config keys in the VM record at start time and performs distribu-
tion-specific installation behavior.

• install-repository - Required. Path to a repository; 'http', 'https', 'ftp', or 'nfs'.
Should be specified as would be used by the target installer, but not including prefixes,
e.g. method=.

• install-vnc - Default: false. Use VNC where available during the installation.

• install-vncpasswd - Default: empty. The VNC password to use, when providing one
is possible using the command-line of the target distribution.

46

• install-round - Default: 1. The current bootloader round. Not to be edited by the user
(see below)

Red Hat Enterprise Linux 4.1/4.4

eliloader is used for two rounds of booting. In the first round, it returns the installer ini-
trd and kernel from /opt/xensource/packages/files/guest-installer. Then,
on the second boot, it removes the additional updates disk from the VM, switches the boot-
loader to pygrub, and then begins a normal boot.

This sequence is required since Red Hat does not provide a Xen kernel for these distri-
butions, and so the Xen Cloud Platform custom kernels for those distributions are used
instead.

Red Hat Enterprise Linux 4.5/5.0

Similar to the RHEL4.4 installation, except that the kernel and ramdisk are downloaded
directly form the network repository that was specified by the user, and switch the bootloader
to pygrub immediately. Note that pygrub is not executed immediately, and so will only be
parsed on the next boot.

The network retrieval enables users to install the upstream Red Hat vendor kernel directly
from their network repository. An updated Xen Cloud Platform kernel is also provided on
the xs-tools.iso built-in ISO image which fixes various Xen-related bugs.

SUSE Enterprise Linux 10 SP1

This requires a two-round boot process. The first round downloads the kernel and ramdisk
from the network repository and boots them. The second round then inspects the disks to
find the installed kernel and ramdisk, and sets the PV-bootloader-args to reflect these
paths within the guest filesystem. This process emulates the domUloader which SUSE
use as an alternative to pygrub. Finally, the bootloader is set to pygrub and is executed
to begin a normal boot.

The SLES 10 installation method means that the path for the kernel and ramdisk is stored
in the VM record rather than in the guest menu.lst, but this is the only way it would ever
work since the YAST package manager doesn't write a valid menu.lst.

CentOS 4.5 / 5.0

The CentOS installation mechanism is similar to that of the Red Hat installation notes above,
save that some MD5 checksums are different which eliloader recognizes.

Adding Xenstore entries to VMs

Developers may wish to install guest agents into VMs which take special action based
on the type of the VM. In order to communicate this information into the guest, a special

47

Xenstore name-space known as vm-data is available which is populated at VM creation
time. It is populated from the xenstore-data map in the VM record.

To populate a Xenstore node foo in a VM

1. Set the xenstore-data parameter in the VM record:

xe vm-param-set uuid=<vm_uuid> xenstore-data:vm-data/foo=bar

2. Start the VM.

3. If it is a Linux-based VM, install the Xen.org Tools for Virtual Machines and use the
xenstore-read to verify that the node exists in Xenstore.

Note

Only prefixes beginning with vm-data are permitted, and anything not in this name-space
will be silently ignored when starting the VM.

Security enhancements

The control domain in Xen Cloud Platform 0.1 and above has various security enhance-
ments in order to harden it against attack from malicious guests. Developers should never
notice any loss of correct functionality as a result of these changes, but they are document-
ed here as variations of behavior from other distributions.

• The socket interface, xenstored, access using libxenstore. Interfaces are restricted
by xs_restrict().

• The device /dev/xen/evtchn, which is accessed by calling xs_evtchn_open() in
libxenctrl. A handle can be restricted using xs_evtchn_restrict().

• The device /proc/xen/privcmd, accessed through xs_interface_open() in
libxenctrl. A handle is restricted using xc_interface_restrict(). Some privi-
leged commands are naturally hard to restrict (e.g. the ability to make arbitrary hyper-
calls), and these are simply prohibited on restricted handles.

• A restricted handle cannot later be granted more privilege, and so the interface must be
closed and re-opened. Security is only gained if the process cannot subsequently open
more handles.

The control domain privileged user-space interfaces can now be restricted to only work for
certain domains. There are three interfaces affected by this change:

• The qemu device emulation processes and vncterm terminal emulation processes run
as a non-root user ID and are restricted into an empty directory. They uses the restriction
API above to drop privileges where possible.

• Access to xenstore is rate-limited to prevent malicious guests from causing a denial of
service on the control domain. This is implemented as a token bucket with a restricted
fill-rate, where most operations take one token and opening a transaction takes 20. The
limits are set high enough that they should never be hit when running even a large number
of concurrent guests under loaded operation.

48

• The VNC guest consoles are bound only to the localhost interface, so that they are not
exposed externally even if the control domain packet filter is disabled by user intervention.

Advanced settings for network interfaces

Virtual and physical network interfaces have some advanced settings that can be configured
using the other-config map parameter. There is a set of custom ethtool settings and
some miscellaneous settings.

ethtool settings

Developers might wish to configure custom ethtool settings for physical and virtual network
interfaces. This is accomplished with ethtool-<option> keys in the other-config
map parameter.

Key Description Valid settings

ethtool-rx Specify if RX checksumming is enabled on or true to enable
the setting, off or
false to disable it

ethtool-tx Specify if TX checksumming is enabled on or true to enable
the setting, off or
false to disable it

ethtool-sg Specify if scatter-gather is enabled on or true to enable
the setting, off or
false to disable it

ethtool-tso Specify if tcp segmentation offload is en-
abled

on or true to enable
the setting, off or
false to disable it

ethtool-ufo Specify if UDP fragmentation offload is
enabled

on or true to enable
the setting, off or
false to disable it

ethtool-gso Specify if generic segmentation offload is
enabled

on or true to enable
the setting, off or
false to disable it

ethtool-au-
toneg

Specify if autonegotiation is enabled on or true to enable
the setting, off or
false to disable it

ethtool-speed Set the device speed in Mb/s 10, 100. or 1000

ethtool-duplex Set full or half duplex mode half or full

For example, to enable TX checksumming on a virtual NIC using the xe CLI:

49

xe vif-param-set uuid=<VIF UUID> other-config:ethtool-tx="on"

or:

xe vif-param-set uuid=<VIF UUID> other-config:ethtool-tx="true"

To set the duplex setting on a physical NIC to half duplex using the xe CLI:

xe vif-param-set uuid=<VIF UUID> other-config:ethtool-duplex="half"

Miscellaneous settings

You can also set a promiscuous mode on a VIF or PIF by setting the promiscuous key to
on. For example, to enable promiscuous mode on a physical NIC using the xe CLI:

xe pif-param-set uuid=<PIF UUID> other-config:promiscuous="on"

or:

xe pif-param-set uuid=<PIF UUID> other-config:promiscuous="true"

The VIF and PIF objects have a MTU parameter that is read-only and provide the current
setting of the maximum transmission unit for the interface. You can override the default
maximum transmission unit of a physical or virtual NIC with the mtu key in the other-con-
fig map parameter. For example, to reset the MTU on a virtual NIC to use jumbo frames
using the xe CLI:

xe vif-param-set uuid=<VIF UUID> other-config:mtu=9000

Note that changing the MTU of underlying interfaces is an advanced and experimental
feature, and may lead to unexpected side-effects if you have varying MTUs across NICs
in a single resource pool.

Internationalization for SR names

The SRs created at install time now have an other_config key indicating how their
names may be internationalized.

other_config["i18n-key"] may be one of

• local-hotplug-cd

• local-hotplug-disk

• local-storage

• xenserver-tools

Additionally, other_config["i18n-original-value-<field name>"] gives the
value of that field when the SR was created. If XenCenter sees a record where
SR.name_label equals other_config["i18n-original-value-name_label"]

50

(that is, the record has not changed since it was created during Xen Cloud Platform instal-
lation), then internationalization will be applied. In other words, XenCenter will disregard
the current contents of that field, and instead use a value appropriate to the user's own
language.

If you change SR.name_label for your own purpose, then it no longer is the same
as other_config["i18n-original-value-name_label"]. Therefore, XenCenter
does not apply internationalization, and instead preserves your given name.

	Xen Cloud Platform Software Development Kit Guide
	Contents
	Chapter 1. Introduction
	Chapter 2. Getting Started
	System Requirements and Preparation
	Downloading
	Installation
	What's new
	Content Map
	Building Samples for the Linux Platform
	Building Samples for the Windows Platform
	Running the CLI
	Tab Completion

	Accessing SDK reference

	Chapter 3. Overview of the Xen Cloud Platform API
	Getting Started with the API
	Authentication: acquiring a session reference
	Acquiring a list of templates to base a new VM installation on
	Installing the VM based on a template
	Taking the VM through a start/suspend/resume/stop cycle
	Logging out
	Install and start example: summary

	Object Model Overview
	Working with VIFs and VBDs
	Creating disks and attaching them to VMs
	Creating a new blank disk image
	Attaching the disk image to a VM
	Hotplugging the VBD

	Creating and attaching Network Devices to VMs
	Host configuration for networking and storage
	Host storage configuration: PBDs
	Host networking configuration: PIFs

	Exporting and Importing VMs
	Xen Virtual Appliance (XVA) VM Import Format

	XML-RPC notes
	Datetimes

	Where to look next

	Chapter 4. Using the API
	Anatomy of a typical application
	Choosing a low-level transport
	Authentication and session handling
	Finding references to useful objects
	Invoking synchronous operations on objects
	Using Tasks to manage asynchronous operations
	Subscribing to and listening for events

	Language bindings
	C
	C#
	Python
	Command Line Interface (CLI)

	Complete application examples
	Simultaneously migrating VMs using XenMotion
	Cloning a VM using the XE CLI

	Chapter 5. Using HTTP to interact with Xen Cloud Platform
	VM Import and Export
	Getting Xen Cloud Platform Performance Statistics

	Chapter 6. Xen Cloud Platform API extensions
	VM console forwarding
	Retrieving VNC consoles using the API
	Disabling VNC forwarding for Linux VM

	Paravirtual Linux installation
	Red Hat Enterprise Linux 4.1/4.4
	Red Hat Enterprise Linux 4.5/5.0
	SUSE Enterprise Linux 10 SP1
	CentOS 4.5 / 5.0

	Adding Xenstore entries to VMs
	Security enhancements
	Advanced settings for network interfaces
	ethtool settings
	Miscellaneous settings

	Internationalization for SR names

